

	Objectives
111	
- Calara	Briefly discuss the historical background of LQTS
·	Present a current definition of Long Q-T Syndrome
	 Compare the pathophysiology of the two major forms of congenital (c) LQTS
	Describe the clinical manifestations of the two forms of c- LQTS
	Discuss current diagnosis and treatment options c-Long QT syndrome
	 Describe the pathophysiology and management of torsades de pointes
	• Discuss the general anesthetic consideration and intraoperative management of the patient with LQTS
	• Outline a proposed peri-operative plan of care for the patient with Long QT syndrome.

- Incidence : 1:1100 3000 (Developed World)
- U.S. 1:7000 persons affected
- causing 2000-3000 sudden deaths in children and young adults yearly
- One of the most common causes of autopsy negative, sudden unexplained death.
- ~ 60-70% of new cases diagnosed in females than males but with lesser cardiac event
- In females cardiac events have been correlated to menses unexplained
- >400 I.D genetic mutations assoc. with LQTS
- ~ 30% of phenotypically affected subjects have no mutation identified on genetic analysis
 - 70% of those affected are silent carriers

- Generally referring to Congenital LQTS

	Congenital LQTS					
Sub	o-type	Frequency	Gene	Mutation Effect	ECG finding	
LQ	TS 1	30-35%	KVLQTI	↓K ⁺ Efflux	Broad, late-inset, T wave	
LQ	TS 2	25-30%	HERG	↓K ⁺ Efflux	Widely-split, low-amplitude, T wave	
LQ	TS 3	5-10%	SCN5A	Prolonged Na+ influx	Biphasic or peaked, late-onset, T wave	
LQ	TS 4	1-2%	ANKB	Build-up of Na ⁺ within cell and Ca ²⁺ outside of cell	Variable Qt interval prolongation	
LQ	TS 5	1%	Mink	$\downarrow_{K^+ Efflux}$	Not defined	
LQ	TS 6	rare	MiRP1	$\downarrow_{K^+ Efflux}$	Not defined	
LQ	TS 7	rare	KCNJ2	\downarrow_{K^+} Efflux	Modest prolongation of Qt interval	
LQ	TS 8	rare	CACNA IC	Prolonged Ca2+ influx	Exaggerated Qt interval prolongation	
LQ	TS 9	rare	CAV3	Prolonged Na+ influx	Not defined	
LQ	TS 10	Extremely rare, found in 1 family	SCN4 β	Prolonged Na ⁺ influx	Not defined	

Congenital LQTS

- Jervel and Lange-Nielson Syndrome
- Autosomal Recessive
- Associated with Profound Bilateral Sensorineural (cause is CN VIII or centers in brain) hearing loss (Homo Vs Heterozygous)
- · Runs a more malignant course
- Assoc. with SIDS/SCD

Congenital LQTS Genotypes • Six genetic variations assoc. with congenital LQTS • LQT-1 and LQT-5 assoc. with JNLS • LQT 1-6 assoc. with RWS • LQT-1 LQT2 and LQT 3 account for over

• LQT-1 LQT2 and LQT3 account for over 90% of cases of congenital LQTS

Congenital LQTS

- Median ages for 1st cardiac event:
 - -LQT1 = 9
 - LQT2 = 12
 - -LQT3 = 16
- Patients with JLNS likely to have their 1st cardiac event at a younger age
 - If untreated, mortality is 20% in year after initial event and 50% within ten years

- LQT-3
 - Na channel blockers Flecanide (75 to 150 mg twice daily orally) and Mexilitine

Congenital LQTS

Pacemakers and ICDs

- Symptomatic patients despite β-blockade
- Could be used with β -blockers
- Pacemaker especially beneficial to LQT-3 patients due to pause-bradycardia induced Tdp.

Congenital LQTS

Left cervicothoracic sympathetic ganglionectomy

•Removal of the first 4 or 5 left thoracic ganaglia and total left stellate ganglion

•In patients with frequent ICD triggers while on beta blockade

•More effective in LQT-1 patients

Does not eliminate risk

Not superior to ICD

Other conditions assoc. with LQTS

• Timothy Syndrome

- Autosomal dominant inheritance with
- Structural heart defects, QT prolongation, Syndactyly and autism
- Anderson-Tawil Syndrome
 - Autosomal dominant inheritance assoc. with LQTS
 - AKA LQT syndrome 7
 - Assoc with physical abnormalities of the head, face, and
- limbs
- Brugada Syndrome
 - Inherited defect in Na+ channels, associated with several ECG patterns

Torsades de Pointes Typical TdP morphology may not be seen in Single lead monitoring Short runs of torsades

- Early events usually short-lived
- Reading could also be affected by
 - Patient movement
 - Faulty lead placement
 - Bovie interference
 - Static electricity

Torsades de Pointes Treatment

- Can be self-limiting or life-threatening
- May result in sudden cardiac death
- Short-term treatment for both congenital and acquired LQTS similar
 - Beta-1 adrenergic stimulation is contraindicated in catecholamine-dependent congenital phenotype

Torsades de Pointes TREATMENT

- Magnesium sulfate
- 2-4gm IV initially in 30-60 seconds
 Repeat 2nd dose in 5-15 minutes
- Effective even in patients with normal Mg+ levels
- Or infusion of 3-20mg/min over 7-48 hours
- Magnesium sulfate decreases calcium influx, decreasing EAD amplitudes
- Some recommend high normal potassium values
- Lidocaine has an initial beneficial effect but TdP recurs in all cases Mexiletine may also be used to suppress TdP.
- Isoproterenol can also be used to accelerate heart rate and override
- electrical pacing (keeping HR >90 bpm)
 - contraindicated in catecholamine-dependent congenital LQTS
 Used as interim treatment until overriding pacing can be started.
 - Used as internit it eatment until overriding pacing can be starte

Beleficies B. (2004). Spin J Anesthesis for Cearean section in the parturient with long QT syndrome. *Candian Journal of Anesthesia*, 51 (10), 993-996. Retrieved February 13, 2010 from http://anearean.enear

